Refractive predictability comparison between three biometers for the calculation of intraocular lenses
DOI:
https://doi.org/10.70313/2718.7446.v18.n1.405Keywords:
cataract, cataract surgery, biometers, intraocular lenses, refraction, Lenstar, Pentacam, ArgosAbstract
Objective. To compare the refractive predictability degree achieved between three ocular biometers.
Methods. Retrospective, single-center, case series comparative study of eyes measured with three different biometers (Lenstar LS900, Pentacam, and Argos), from October to December 2024. The calculation for the Alcon SA60AT intraocular lens was performed using four formulas, Haigis, SRK/T, Hoffer Q, and Barrett Universal II, taking Haigis as a reference. The level of predictability was evaluated by comparing the preoperative values obtained with each biometer and the difference with the postoperative spherical equivalent (SE) obtained. A Pearson linear regression test was performed to evaluate the correlation between the measurements. Differences between the measurements of each biometer were performed by analysis of variance (ANOVA).
Results. Sixty-three eyes were included. The mean value of the lenses to be implanted was 21.52 ±1.69 D (18.5 to 25.0). When comparing the calculated preoperative value minus the ES obtained, for the Lenstar it was -0.005 ±0.58 (-2.2 to 1.6), for the Pentacam it was -0.15 ±0.62 (-2.6 to 1.2) and for the Argos, it was -0.04 ±0.56 (-2.5 to 1.2). Pentacam was the only one that showed a statistically significant difference.
Conclusion. In the evaluated sample, no differences were found in the predictive value between Lenstar LS900, and Argos, but Pentacam showed a statistically lower ES than the calculated preoperative value.
Downloads
References
Hashemi H, Fayaz F, Hashemi A, Khabazkhoob M. Global prevalence of cataract surgery. Curr Opin Ophthalmol. 2025; 36(1): 10-17. doi:10.1097/ICU.0000000000001092
Gatinel D, Debellemanière G, Saad A, Rampat R. Theoretical relationship among effective lens position, predicted refraction, and corneal and intraocular lens power in a pseudophakic eye model. Transl Vis Sci Technol. 2022; 11(9): 5. doi:10.1167/tvst.11.9.5
Schröder S, Leydolt C, Menapace R, Eppig T, Langenbucher A. Determination of personalized IOL-constants for the haigis formula under consideration of measurement precision. PLoS One. 2016; 11(7): e0158988. doi:10.1371/journal.pone.0158988
Khoramnia R, Auffarth G, Łabuz G, Pettit G, Suryakumar R. Refractive outcomes after cataract surgery. Diagnostics (Basel). 2022; 12(2): 243. doi:10.3390/diagnostics12020243
Turnbull AMJ, Hill WE, Barrett GD. Accuracy of intraocular lens power calculation methods when targeting low myopia in monovision. J Cataract Refract Surg. 2020; 46(6): 862-866. doi:10.1097/j.jcrs.0000000000000187
Schallhorn SC, Hettinger KA, Pelouskova M et al. Effect of residual astigmatism on uncorrected visual acuity and patient satisfaction in pseudophakic patients. J Cataract Refract Surg. 2021; 47(8): 991-998. doi:10.1097/j.jcrs.0000000000000560
Kane JX, Chang DF. Intraocular lens power formulas, biometry, and intraoperative aberrometry: a review. Ophthalmology. 2021; 128(11): e94-e114. doi:10.1016/j.ophtha.2020.08.010
Stopyra W, Langenbucher A, Grzybowski A. intraocular lens power calculation formulas: a systematic review. Ophthalmol Ther. 2023; 12(6): 2881-2902. doi:10.1007/s40123-023-00799-6
Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol. 2009; 93(7): 949-953. doi:10.1136/bjo.2008.156554
Ruiz-Mesa R, Abengózar-Vela A, Ruiz-Santos M. Comparison of a new Scheimpflug imaging combined with partial coherence interferometry biometer and a low-coherence reflectometry biometer. J Cataract Refract Surg. 2017; 43(11): 1406-1412. doi:10.1016/j.jcrs.2017.08.016
Whang WJ, Yoo YS, Kang MJ, Joo CK. Predictive accuracy of partial coherence interferometry and swept-source optical coherence tomography for intraocular lens power calculation. Sci Rep. 2018; 8(1): 13732. doi:10.1038/s41598-018-32246-z
Buonsanti D, Raimundo M, Findl O. Online intraocular lens calculation. Curr Opin Ophthalmol. 2024; 35(1): 11-16. doi:10.1097/ICU.0000000000001014
Stopyra W, Voytsekhivskyy O, Grzybowski A. Prediction of seven artificial intelligence-based intraocular lens power calculation formulas in medium-long caucasian eyes. Life (Basel). 2025; 15(1): 45. doi:10.3390/life15010045
Blehm C, Hall B. Comparing predictive accuracy of a swept source optical coherence tomography biometer and an optical low coherence reflectometry biometer. Clin Ophthalmol. 2023; 17: 2125-2131. doi:10.2147/OPTH.S421504
Gjerdrum B, Gundersen KG, Nilsen C, Gundersen M, Jensen P. refractive predictability and biometry agreement of a combined swept source optical coherence and reflectometry biometer compared to an optical low coherence reflectometry biometer and an SS-OCT biometer. Clin Ophthalmol. 2023; 17: 1439-1452. doi:10.2147/OPTH.S408685
Arruda HA, Pereira JM, Neves A, Vieira MJ, Martins J, Sousa JC. Lenstar LS 900 versus Pentacam-AXL: analysis of refractive outcomes and predicted refraction. Sci Rep. 2021; 11(1): 1449. doi:10.1038/s41598-021-81146-2
Multack S, Plummer N, Marneris A, Hall B. A Retrospective trial comparing prediction accuracy of three biometers in short, medium, and long eyes. Clin Ophthalmol. 2025; 19: 577-583. doi:10.2147/OPTH.S487889
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Consejo Argentino de Oftalmología

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Con esta licencia no se permite un uso comercial de la obra original, ni la generación de obras derivadas. Las licencias Creative Commons permiten a los autores compartir y liberar sus obras en forma legal y segura.