Mesenchymal stromal cells-derived extracellular vesicles for corneal regeneration in an experimental model of corneal injury
DOI:
https://doi.org/10.70313/2718.7446.v18.n2.421Keywords:
stromal mesenchymal stem cells, extracellular vesicles, corneal regenerationAbstract
Objective
In recent years, our research has focused on the regenerative, anti-inflammatory, and immunomodulatory properties of extracellular vesicles (EVs) secreted by mesenchymal stem cells (MSCs). Given that corneal opacity is primarily driven by dysregulation of regenerative and inflammatory pathways, the aim of this study was to evaluate the therapeutic potential of MSC-derived EVs in an experimental model of corneal injury.
Methods
We previously established a protocol for the isolation of EVs and the assessment of their anti-inflammatory effects in vitro. This protocol includes the controlled culture of MSCs derived from human umbilical cord tissue, collection of conditioned medium, and EV purification through ion-exchange chromatography. In this study, a murine model of corneal injury was developed by topical application of 10 µL of NaOH (0.125 M), followed by daily topical treatment with 10 µL of EVs (1×10⁹ particles/mL) for five consecutive days. Therapeutic efficacy was evaluated by histological staining (hematoxylin- eosin) and quantitative real-time RT-PCR analysis of inflammatory cytokines.
Results
Clinical and histological analyses revealed that NaOH application induced moderate corneal injury, which was significantly ameliorated following EV treatment compared to vehicle controls. Expression levels of inflammatory cytokines were markedly upregulated after chemical injury and significantly downregulated after EV administration (n=5, p<0.05).
Conclusion
Our findings demonstrate the successful establishment of a simple and reproducible model of corneal epithelial injury, suitable for evaluating new therapeutic approaches. Furthermore, the results underscore the potent regenerative and anti-inflammatory properties of MSC-derived EVs, highlighting their promising potential for the treatment of inflammatory ocular diseases.
Downloads
References
1. Saccu G, Menchise V, Giordano C et al. Regenerative approaches and future trends for the treatment of corneal burn injuries. J Clin Med 2021; 10(2): 317. doi:10.3390/jcm10020317.
2. Liu Y, Kimura K, Yanai R, Chikama T, Nishida T. Cytokine, chemokine, and adhesion molecule expression mediated by MAPKs in human corneal fibroblasts exposed to poly(I:C). Invest Ophthalmol Vis Sci 2008; 49(8): 3336-3344. doi:10.1167/iovs.07-0972.
3. Liu J, Xue Y, Dong D et al. CCR2- and CCR2+ corneal macrophages exhibit distinct characteristics and balance inflammatory responses after epithelial abrasion. Mucosal Immunol 2017; 10(5): 1145-1159. doi:10.1038/mi.2016.139.
4. Liu J, Li Z. Resident innate immune cells in the cornea. Front Immunol 2021; 12: 620284. doi:10.3389/fimmu.2021.620284.
5. Jhanji V, Billig I, Yam GH. Cell-free biological approach for corneal stromal wound healing. Front Pharmacol 2021; 12: 671405. doi:10.3389/fphar.2021.671405.
6. Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther 2020; 11(1): 345. doi:10.1186/s13287-020-01855-9.
7. Kou M, Huang L, Yang J et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis 2022; 13(7): 580. doi:10.1038/s41419-022-05034-x.
8. Klumperman J, Raposo G. The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol 2014; 6(10): a016857. doi:10.1101/cshperspect.a016857.
9. Murphy DE, de Jong OG, Brouwer M et al. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Mol Med 2019; 51(3): 1-12. doi:10.1038/s12276-019-0223-5.
10. Koh HB, Kim HJ, Kang SW, Yoo TH. Exosome-based drug delivery: translation from bench to clinic. Pharmaceutics 2023; 15(8): 2042. doi:10.3390/pharmaceutics15082042.
11. Ghosh S, Ghosh S. Exosome: The “Off-the-shelf” cellular nanocomponent as a potential pathogenic agent, a disease biomarker, and neurotherapeutics. Front Pharmacol 2022; 13: 878058. doi:10.3389/fphar.2022.878058.
12. Gong L, Tian L, Cui K et al. An off-the-shelf small extracellular vesicle nanomedicine for tumor targeting therapy. J Control Release 2023; 364: 672-686. doi:10.1016/j.jconrel.2023.11.013.
13. Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 2021; 16(7): 748-759. doi:10.1038/s41565-021-00931-2.
14. Kar R, Dhar R, Mukherjee S et al. Exosome-based smart drug delivery tool for cancer theranostics. ACS Biomater Sci Eng 2023; 9(2): 577-594. doi:10.1021/acsbiomaterials.2c01329.
15. Sharma V, Mukhopadhyay CD. Exosome as drug delivery system: current advancements. Extracellular Vesicle 2024; 3:100032. doi:10.1016/j.vesic.2023.100032.
16. Samaeekia R, Rabiee B, Putra I et al. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2018; 59(12): 5194-5200. doi:10.1167/iovs.18-24803.
17. Desjardins P, Berthiaume R, Couture C et al. Impact of exosomes released by different corneal cell types on the wound healing properties of human corneal epithelial cells. Int J Mol Sci 2022; 23(20): 12201. doi:10.3390/ijms232012201.
18. Ong HS, Riau AK, Yam GH et al. Mesenchymal stem cell exosomes as immunomodulatory therapy for corneal scarring. Int J Mol Sci 2023; 24(8): 7456. doi:10.3390/ijms24087456.
19. Pacienza N, Lee RH, Bae EH et al. In vitro macrophage assay predicts the in vivo anti-inflammatory potential of exosomes from human mesenchymal stromal cells. Mol Ther Methods Clin Dev 2018; 13: 67-76. doi:10.1016/j.omtm.2018.12.003.
20. Malvicini R, Santa-Cruz D, De Lazzari G et al. Macrophage bioassay standardization to assess the anti-inflammatory activity of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 2022; 24(10): 999-1012. doi:10.1016/j.jcyt.2022.05.011.
21. Malvicini R, Santa-Cruz D, Tolomeo AM, Muraca M, Yannarelli G, Pacienza N. Ion exchange chromatography as a simple and scalable method to isolate biologically active small extracellular vesicles from conditioned media. PLoS One 2023; 18(9): e0291589. doi:10.1371/journal.pone.0291589.
22. Su Y, Chen M, Xu W, Gu P, Fan X. Advances in extracellular-vesicles-based diagnostic and therapeutic approaches for ocular diseases. ACS Nano 2024; 18(34): 22793-22828. doi:10.1021/acsnano.4c08486.
23. Yannarelli G, Pacienza N, Cuniberti L, Medin J, Davies J, Keating A. Brief report: the potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 2013; 31(1): 215-220. doi:10.1002/stem.1262.
24. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-317. doi:10.1080/14653240600855905.
25. Shadmani A, Dhowre HS, Ercal O, Meng XQ, Wu AY. Corneal and limbal alkali injury induction using a punch-trephine technique in a mouse model. J Vis Exp 2023; (198): 10.3791/65609. doi:10.3791/65609.
26. Domínguez LM, Bueloni B, Cantero MJ et al. Chromatographic scalable method to isolate engineered extracellular vesicles derived from mesenchymal stem cells for the treatment of liver fibrosis in mice. Int J Mol Sci 2023; 24(11): 9586. doi:10.3390/ijms24119586.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Consejo Argentino de Oftalmología

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Con esta licencia no se permite un uso comercial de la obra original, ni la generación de obras derivadas. Las licencias Creative Commons permiten a los autores compartir y liberar sus obras en forma legal y segura.