Ophthalmology Prompts

Authors

  • Leonardo Ferlini Consejo Argentino de Oftalmología
  • Daniel Sabella Consejo Argentino de Oftalmología

DOI:

https://doi.org/10.70313/2718.7446.v18.n1.406

Keywords:

artificial intelligence, prompts, Chat GPT, medicine, ophthalmology

Abstract

Artificial intelligence is in our lives, in a stage of growth and evolution. For an ophthalmic physician, AI can be a tool of great value, in both clinical practice and research. Its use depends largely on understanding how it works, its strengths, and its limitations. One of the keys to truly taking advantage of it is asking the right questions, most properly, for which there are interaction structures between humans and AI called “prompts”, which are the instructions that we give to these sophisticated regenerative intelligence systems. This article will give a practical introduction to this tool in the context of ophthalmology.

Downloads

Download data is not yet available.

Author Biographies

  • Leonardo Ferlini, Consejo Argentino de Oftalmología

    Departamento de Innovación, Desarrollo e Investigación del Consejo Argentino de Oftalmología. Cdad. Autónoma de Buenos Aires; Argentina

  • Daniel Sabella, Consejo Argentino de Oftalmología

    Departamento de Innovación, Desarrollo e Investigación del Consejo Argentino de Oftalmología. Cdad. Autónoma de Buenos Aires.

References

Meskó B. Prompt engineering as an important emerging skill for medical professionals: tutorial. J Med Internet Res. 2023; 25: e50638. doi:10.2196/50638

Younis HA, Eisa TAE, Nasser M et al. A systematic review and meta-analysis of artificial intelligence tools in medicine and healthcare: applications, considerations, limitations, motivation and challenges. Diagnostics (Basel). 2024; 14(1): 109. doi:10.3390/diagnostics14010109

Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge. Nature. 2023; 620(7972): 172-180. doi:10.1038/s41586-023-06291-2 [errata corregida en Nature. 2023;620(7973):E19.]

Wang L, Chen X, Deng X et al. Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs. NPJ Digit Med. 2024; 7(1): 41. doi:10.1038/s41746-024-01029-4

Lan H. Prompt engineering for academic librarian: implications and applications of prompt engineering in academic librarianship. Journal of Web Librarianship 2024; 18(3): 169-175. doi:10.1080/19322909.2024.2399055

Lee JH, Shin J. How to optimize prompting for large language models in clinical research. Korean J Radiol. 2024; 25(10): 869-873. doi:10.3348/kjr.2024.0695

Saravia E. Guía de ingeniería de prompt. [S.l.]: DAIR.AI, 2022. DAIR.AI. Disponible en: https://www.promptingguide.ai/es

Published

2025-03-28

Issue

Section

Scientific Opinions

How to Cite

[1]
2025. Ophthalmology Prompts. Oftalmología Clínica y Experimental. 18, 1 (Mar. 2025), e7-e14. DOI:https://doi.org/10.70313/2718.7446.v18.n1.406.

Most read articles by the same author(s)