Early diagnosis of open-angle glaucoma in Argentina

a survey on available and necessary technology

Authors

  • María Constanza Tripolone Instituto de Investigación en Luz, Ambiente y Visión, Consejo Nacional de Investigaciones Científicas y Técnica, Universidad Nacional de Tucumán, Argentina. (ILAV – CONICET – UNT)
  • Clemente Paz Filgueira Instituto de Investigación en Luz, Ambiente y Visión, Consejo Nacional de Investigaciones Científicas y Técnica, Universidad Nacional de Tucumán, Argentina. (ILAV – CONICET – UNT)
  • Luis Issolio Instituto de Investigación en Luz, Ambiente y Visión, Consejo Nacional de Investigaciones Científicas y Técnica, Universidad Nacional de Tucumán, Argentina. (ILAV – CONICET – UNT)
  • Pablo Barrionuevo Instituto de Investigación en Luz, Ambiente y Visión, Consejo Nacional de Investigaciones Científicas y Técnica, Universidad Nacional de Tucumán, Argentina.  (ILAV – CONICET – UNT) .Allgemeine und Biologische Psychologie, Philipps Universität Marburg, Alemania.

DOI:

https://doi.org/10.70313/2718.7446.v17.n04.366

Keywords:

Open-angle glaucoma, Diagnostic methodologies, Functional assessment

Abstract

Purpose: To investigate the ophthalmologists' opinion about the available methodologies for early diagnosing open angle glaucoma (OAG) and assess the need for new retinal function evaluation methods.

Methods: A cross-sectional study was conducted, based on a survey addressed to ophthalmologists residing in Argentina. A virtual format survey was done including four questions that inquire about the diagnosis of OAG from a methodological/technological point of view.

Results: A total of 65 ophthalmologists completed the questionnaire. 54% of the ophthalmologists surveyed consider that work should be done on methodologies allowing for earlier OAG detection. To improve diagnosis, 66% indicated that work should be done on methodologies that assess both structural and functional retina features. 37% indicated that they have knowledge of methodologies for the functional assessment of the retinal layers. Finally, 78% consider that the functional assessment of the retinal layers is “very important” for diagnosis.

Conclusions: This survey shows, from the point of view of ophthalmologists, the need for functional assessment tools to improve the diagnosis of OAG at early stages. The available functional evaluation technologies lack sensitivity for diagnosis at early stages, showing the importance of developing new functional methodologies.

Author Biography

Luis Issolio, Instituto de Investigación en Luz, Ambiente y Visión, Consejo Nacional de Investigaciones Científicas y Técnica, Universidad Nacional de Tucumán, Argentina. (ILAV – CONICET – UNT)

Departamento de Luminotecnia, Luz y Visión, Universidad Nacional de Tucumán, Argentina. (DLLyV – UNT)

References

Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults-screening, diagnosis, and management: a review. JAMA 2021; 325(2): 164-174. doi:10.1001/jama.2020.21899.

GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study [published correction appears in Lancet Glob Health 2021; 9(4):e408. doi: 10.1016/S2214-109X(21)00050-4]. Lancet Glob Health 2021; 9(2): e144-e160. doi:10.1016/S2214-109X(20)30489-7.

Zhang N, Wang J, Li Y, Jiang B. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review. Sci Rep 2021; 11(1): 13762. Published 2021 Jul 2. doi:10.1038/s41598-021-92971-w.

Tatham AJ, Weinreb RN, Medeiros FA. Strategies for improving early detection of glaucoma: the combined structure-function index. Clin Ophthalmol 2014; 8: 611-621. Published 2014 Mar 26. doi:10.2147/OPTH.S44586.

Lucy KA, Wollstein G. Structural and functional evaluations for the early detection of glaucoma. Expert Rev Ophthalmol 2016; 11(5): 367-376. doi:10.1080/17469899.2016.1229599.

Gedde SJ, Vinod K, Wright MM, et al. Primary open-angle glaucoma preferred practice pattern®. Ophthalmology 2021; 128(1): P71-P150. doi:10.1016/j.ophtha.2020.10.022.

Weinreb RN, Leung CK, Crowston JG, et al. Primary open-angle glaucoma. Nat Rev Dis Primers 2016; 2: 16067. Published 2016 Sep 22. doi:10.1038/nrdp.2016.67.

Chaudhary N, Sachdeva N, Sharma U. OCT RNFL and macular GCC. Delhi J Ophthalmol 2021; 32(2): 67-74. doi:10.7869/djo.723.

Kansal V, Armstrong JJ, Pintwala R, Hutnik C. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One 2018; 13(1): e0190621. Published 2018 Jan 4. doi:10.1371/journal.pone.0190621.

Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci 2012; 53(11): 6939-6946. Published 2012 Oct 5. doi:10.1167/iovs.12-10345.

Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 2007; 26(6): 688-710. doi:10.1016/j.preteyeres.2007.08.001.

Quispe Fuentes JE, García López A, Ortega Santana JF. Correlación entre parámetros estructurales del nervio óptico: distancia mínima al borde BMO-MRW y promedio de capa de fibras nerviosas RNFL medido por tomografía de coherencia óptica en pacientes con daño campimétrico por glaucoma. Rev Mex Oftalmol 2017; 91(4): 203-208. doi:10.1016/j.mexoft.2016.05.001.

Hood DC. Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 2017; 57: 46-75. doi:10.1016/j.preteyeres.2016.12.002.

Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107(5): 453-464. doi:10.1016/0002-9394(89)90488-1.

Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol 2006; 124(6): 853-859. doi:10.1001/archopht.124.6.853.

Wesselink C, Jansonius NM. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study. Ophthalmic Physiol Opt 2017; 37(5): 594-601. doi:10.1111/opo.12401.

Liu S, Yu M, Weinreb RN, Lai G, Lam DS, Leung CK. Frequency-doubling technology perimetry for detection of the development of visual field defects in glaucoma suspect eyes: a prospective study. JAMA Ophthalmol 2014; 132(1): 77-83. doi:10.1001/jamaophthalmol.2013.5511.

Rossetti L, Fogagnolo P, Mazzolani F, Incarnato N, Orzalesi N. Detection of early glaucoma with FDT and SWAP: the results of a longitudinal study. Invest Ophthalmol Vis Sci 2005; 46(13): 2486. https://iovs.arvojournals.org/article.aspx?articleid=2401928

Reznicek L, Lamparter J, Vogel M, Kampik A, Hirneiß C. Flicker defined form perimetry in glaucoma suspects with normal achromatic visual fields. Curr Eye Res 2015; 40(7): 683-689. doi:10.3109/02713683.2014.957324.

Mowatt G, Burr JM, Cook JA, et al. Screening tests for detecting open-angle glaucoma: systematic review and meta-analysis. Invest Ophthalmol Vis Sci 2008; 49(12): 5373-5385. doi:10.1167/iovs.07-1501.

Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41(3): 741-748.

Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 1999; 40(10): 2242-2250.

Ginsburg AP. Contrast sensitivity and functional vision. Int Ophthalmol Clin 2003; 43(2): 5-15. doi:10.1097/00004397-200343020-00004.

Falcão-Reis F, O'Donoghue E, Buceti R, Hitchings RA, Arden GB. Peripheral contrast sensitivity in glaucoma and ocular hypertension. Br J Ophthalmol 1990; 74(12): 712-716. doi:10.1136/bjo.74.12.712.

Ansari EA, Morgan JE, Snowden RJ. Psychophysical characterisation of early functional loss in glaucoma and ocular hypertension. Br J Ophthalmol 2002; 86(10): 1131-1135. doi:10.1136/bjo.86.10.1131.

Lahav K, Levkovitch-Verbin H, Belkin M, Glovinsky Y, Polat U. Reduced mesopic and photopic foveal contrast sensitivity in glaucoma. Arch Ophthalmol 2011; 129(1): 16-22. doi:10.1001/archophthalmol.2010.332.

Bierings RAJM, Overkempe T, van Berkel CM, Kuiper M, Jansonius NM. Spatial contrast sensitivity from star- to sunlight in healthy subjects and patients with glaucoma. Vision Res 2019; 158: 31-39. doi:10.1016/j.visres.2019.01.011.

Tripolone MC, Issolio L, Silva B, Filgueira CP, Pérez D, Barrionuevo P. Sensibilidad al contraste en pacientes con glaucoma temprano: efectos del nivel de iluminación y la excentricidad. Anales AFA 2018 (no. esp.): 62-66. doi: 10.31527/analesafa.2018.inVisionT.62

Tripolone MC, Issolio LA, Pérez DO, Barrionuevo PA. Contrast sensitivity is impaired in suspected primary open-angle glaucoma patients. Brain Sci 2024; 14(10): 993. Published 2024 Sep 29. doi:10.3390/brainsci14100993.

Standard for clinical electroretinography. International Standardization Committee. Arch Ophthalmol 1989; 107(6): 816-819. doi:10.1001/archopht.1989.01070010838024.

Tirsi A, Orshan D, Wong B, et al. Associations between steady-state pattern electroretinography and estimated retinal ganglion cell count in glaucoma suspects. Doc Ophthalmol 2022; 145(1): 11-25. doi:10.1007/s10633-022-09869-9.

Tirsi A, Gliagias V, Moehringer J, et al. Pattern electroretinogram parameters are associated with optic nerve morphology in preperimetric glaucoma after adjusting for disc area. J Ophthalmol 2021; 2021: 8025337. Published 2021 Oct 13. doi:10.1155/2021/8025337.

Mavilio A, Scrimieri F, Errico D. Can variability of pattern ERG signal help to detect retinal ganglion cells dysfunction in glaucomatous eyes? Biomed Res Int 2015; 2015: 571314. doi:10.1155/2015/571314.

Park K, Kim J, Lee J. Measurement of macular structure-function relationships using spectral domain-optical coherence tomography (SD-OCT) and pattern electroretinograms (PERG). PLoS One 2017;12(5): e0178004. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178004

Jeon SJ, Park HL, Jung KI, Park CK. Relationship between pattern electroretinogram and optic disc morphology in glaucoma. PLoS One 2019; 14(11): e0220992. Published 2019 Nov 7. doi:10.1371/journal.pone.0220992.

Porciatti V, Ventura LM. Physiologic significance of steady-state pattern electroretinogram losses in glaucoma: clues from simulation of abnormalities in normal subjects. J Glaucoma 2009; 18(7): 535-542. doi:10.1097/IJG.0b013e318193c2e1.

Kelbsch C, Strasser T, Chen Y, et al. Standards in pupillography [published correction appears in Front Neurol 2019 Mar 27;10:371. doi: 10.3389/fneur.2019.00371]. Front Neurol 2019; 10: 129. doi:10.3389/fneur.2019.00129.

Rukmini AV, Milea D, Gooley JJ. Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases. Front Neurol 2019; 10: 76. doi:10.3389/fneur.2019.00076.

Barrionuevo PA, Issolio LA, Tripolone C. Photoreceptor contributions to the human pupil light reflex. J Photochem Photobiol 2023; 15:100178. doi:10.1016/j.jpap.2023.100178.

Feigl B, Mattes D, Thomas R, Zele AJ. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci 2011; 52(7): 4362-4367. doi:10.1167/iovs.10-7069.

Gracitelli CP, Duque-Chica GL, Moura AL, et al. A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 2014; 55(12): 7997-8005. Published 2014 Nov 18. doi:10.1167/iovs.14-15146.

Duque-Chica GL, Gracitelli CPB, Moura ALA, et al. Inner and outer retinal contributions to pupillary light response: correlation to functional and morphologic parameters in glaucoma. J Glaucoma 2018; 27(8): 723-732. doi:10.1097/IJG.0000000000001003.

Rukmini AV, Milea D, Baskaran M, et al. Pupillary responses to high-irradiance blue light correlate with glaucoma severity. Ophthalmology 2015; 122(9): 1777-1785. doi:10.1016/j.ophtha.2015.06.002.

Najjar RP, Rukmini AV, Finkelstein MT, et al. Handheld chromatic pupillometry can accurately and rapidly reveal functional loss in glaucoma.Br J Ophthalmol 2023; 107(5): 663-670. doi:10.1136/bjophthalmol-2021-319938.

Quan Y, Duan H, Zhan Z, et al. Evaluation of the glaucomatous macular damage by chromatic pupillometry. Ophthalmol Ther 2023; 12(4): 2133-2156. doi:10.1007/s40123-023-00738-5.

Najjar RP, Sharma S, Atalay E, et al. Pupillary responses to full-field chromatic stimuli are reduced in patients with early-stage primary open-angle glaucoma. Ophthalmology 2018; 125(9): 1362-1371. doi:10.1016/j.ophtha.2018.02.024.

Adhikari P, Zele AJ, Thomas R, Feigl B. Quadrant field pupillometry detects melanopsin dysfunction in glaucoma suspects and early glaucoma. Sci Rep 2016; 6: 33373. Published 2016 Sep 13. doi:10.1038/srep33373.

Tripolone MC, Issolio LA, Agüero C, Lavaque A, Cao D, Barrionuevo PA. Comparing flickering and pulsed chromatic pupil light responses. J Opt Soc Am A Opt Image Sci Vis 2022; 39(8): 1505-1512. doi:10.1364/JOSAA.455619.

Published

2024-12-19

How to Cite

[1]
Tripolone, M.C., Filgueira, C.P., Issolio, L. and Barrionuevo, P. 2024. Early diagnosis of open-angle glaucoma in Argentina: a survey on available and necessary technology. Oftalmología Clínica y Experimental. 17, 4 (Dec. 2024), e523-e534. DOI:https://doi.org/10.70313/2718.7446.v17.n04.366.

Issue

Section

Artículos Originales

Most read articles by the same author(s)