Chromatic pupillometry in primary open-angle glaucoma suspected patients

Authors

  • María Constanza Tripolone Instituto de Investigación en Luz, Ambiente y Visión (ILAV-CONICET), San Miguel de Tucumán, Argentina
  • Luis Issolio Instituto de Investigación en Luz, Ambiente y Visión (ILAV-CONICET), San Miguel de Tucumán, Argentina. Departamento de Luminotecnia, Luz y Visión, Universidad
  • Carlos Agüero Centro de Especialidades Oftalmológicas (CEO), San Miguel de Tucumán, Argentina
  • Alejandro Lavaque Centro de Especialidades Oftalmológicas (CEO), San Miguel de Tucumán, Argentina
  • Pablo Barrionuevo Instituto de Investigación en Luz, Ambiente y Visión (ILAV-CONICET), San Miguel de Tucumán, Argentina. Allgemeine Psychologie, Justus-Liebig-Universität, Giessen, Alemania

DOI:

https://doi.org/10.70313/2718.7446.v16.n04.258

Keywords:

glaucoma suspect, chromatic pupillometry, flickering pupillary responses

Abstract

Purpose: The pupil light reflex to different colors lights (chromatic pupillometry) can be used as a biomarker of the retina functional state. In this work, we assessed the flickering pupillary response to colored stimuli in patients with suspected primary open-angle glaucoma.

Methods: 41 volunteers participated in this study: 20 glaucoma suspects and 21 healthy controls. A photostimulator-pupillometric system was used to record the flickering pupillary responses. Blue, green and red sinusoidal light stimuli (frequency = 1 Hz; duration = 10 secs) were used. Pupillary parameters in time and frequency domain were assessed for each group, and the differencies between them were analysed.

Results: Initial constriction, plateau, amplitude phase parameters were decreased in glaucoma suspected patients respect to the control group, for all stimuli conditions. However, time to minimum was constant between both groups.

Conclusions: The flickering pupillary responses were decreased in glaucoma suspected patients, suggesting a possible retinal cells disfunction. Early functional changes due to glaucoma could be assessed by flickering chromatic pupillometry.

References

Mowatt G, Burr JM, OAG Screening Project et al. Screening tests for detecting open-angle glaucoma: systematic review and meta-analysis. Invest Ophthalmol Vis Sci 2008; 49: 5373-5385.

Zhang N, Wang J, Li Y, Jiang B. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review. Sci Rep 2021; 11: 13762.

GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021; 9: e144-e160; e408.

Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070-1073.

Dacey DM, Liao HW, Peterson BB et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005; 433: 749-754.

Barrionuevo PA, Issolio LA, Tripolone C. Photoreceptor contributions to the human pupil light reflex. J Photochem Photobiol 2023; 15:100178.

Provencio I, Rodriguez IR, Jiang G et al. A novel human opsin in the inner retina. J Neurosci 2000; 20: 600-605.

Hattar S, Liao HW, Takao M et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002; 295: 1065-1070.

Baver SB, Pickard GE, Sollars PJ, Pickard GE. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 2008; 27: 1763-1770.

Kelbsch C, Strasser T, Chen Y et al. Standards in pupillography. Front Neurol 2019; 10: 129.

Rukmini AV, Milea D, Gooley JJ. Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases. Front Neurol 2019; 10: 76.

Park JC, Moura AL, Raza AS et al. Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. Invest Ophthalmol Vis Sci 2011; 52: 6624-6635.

Kardon R, Anderson SC, Damarjian TG et al. Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology 2009; 116: 1564-1573.

Kardon R, Anderson SC, Damarjian TG et al. Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology 2011; 118: 376-381.

Kawasaki A, Munier FL, Leon L, Kardon RH. Pupillometric quantification of residual rod and cone activity in leber congenital amaurosis. Arch Ophthalmol 2012; 130: 798-800.

Feigl B, Zele AJ, Fader SM et al. The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmol 2012; 90: e230-e234.

Feigl B, Zele AJ. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease. Optom Vis Sci 2014; 91: 894-903.

Maynard ML, Zele AJ, Feigl B. Melanopsin-mediated post-illumination pupil response in early age-related macular degeneration. Invest Ophthalmol Vis Sci 2015; 56: 6906-6913.

Moura ALA, Nagy BV, La Morgia C et al. The pupil light reflex in Leber’s hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells. Invest Ophthalmol Vis Sci 2013; 54: 4471-4477.

Feigl B, Mattes D, Thomas R, Zele AJ. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 4362-4367.

Gracitelli CPB, Duque-Chica GL, Moura AL et al. A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 2014; 55: 7997-8005.

Duque-Chica GL, Gracitelli CPB, Moura ALA et al. Inner and outer retinal contributions to pupillary light response: correlation to functional and morphologic parameters in glaucoma. J Glaucoma 2018; 27: 723-732.

Najjar RP, Sharma S, Atalay E et al. Pupillary responses to full-field chromatic stimuli are reduced in patients with early-stage primary open-angle glaucoma. Ophthalmology 2018; 125: 1362-1371.

Rukmini AV, Milea D, Baskaran M et al. Pupillary responses to high-irradiance blue light correlate with glaucoma severity. Ophthalmology 2015; 122: 1777-1785.

Adhikari P, Zele AJ, Thomas R, Feigl B. Quadrant field pupillometry detects melanopsin dysfunction in glaucoma suspects and early glaucoma. Sci Rep 2016; 6: 33373.

Adhikari P, Feigl B, Zele AJ. The flicker Pupil Light Response (fPLR). Transl Vis Sci Technol 2019; 8: 29.

Troelstra A. Detection of time-varying light signals as measured by the pupillary response. J Opt Soc Am 1968; 58: 685-690.

Barrionuevo PA, Nicandro N, McAnany JJ et al. Assessing rod, cone, and melanopsin contributions to human pupil flicker responses. Invest Ophthalmol Vis Sci 2014; 55: 719-727.

Tripolone MC, Issolio LA, Agüero C et al. Comparing flickering and pulsed chromatic pupil light responses. J Opt Soc Am A Opt Image Sci Vis 2022; 39: 1505-1512.

Tripolone C, Romano P, Issolio L, Barrionuevo P. Desarrollo de un sistema portátil para medir el tamaño pupilar bajo estimulación monocromática dinámica. En: Encuentro Científico de Investigadores de la Facultad de Ciencias Exactas y Tecnología (ECIFACET) de la Universidad Nacional de Tucumán. Libro de resúmenes [en línea]. San Miguel de Tucumán: FACET, 2019, p. 103. Disponible en: https://www.facet.unt.edu.ar/ecifacet/wp-content/uploads/sites/40/2019/12/ECIFACET-Edición-2019-LIBRO-DE-RESUMENES.pdf

Barrionuevo PA, Cao D. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response. J Vis 2016; 16: 29.

Barrionuevo PA, McAnany JJ, Zele AJ, Cao D. Non-linearities in the rod and cone photoreceptor inputs to the afferent pupil light response. Front Neurol 2018; 9: 1140.

Tirsi A, Gliagias V, Moehringer J et al. Pattern electroretinogram parameters are associated with optic nerve morphology in preperimetric glaucoma after adjusting for disc area. J Ophthalmol 2021; 2021: 8025337.

Gordon PS, Kostic M, Monsalve PF et al. Long-term PERG monitoring of untreated and treated glaucoma suspects. Doc Ophthalmol 2020; 141: 149-156.

Ventura LM, Golubev I, Feuer WJ, Porciatti V. Pattern electroretinogram progression in glaucoma suspects. J Glaucoma 2013; 22: 219-225.

Güler AD, Ecker JL, Lall GS et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 2008; 453: 102-105.

Bitsios P, Prettyman R, Szabadi E. Changes in autonomic function with age: a study of pupillary kinetics in healthy young and old people. Age Ageing 1996; 25: 432-438.

Fotiou DF, Brozou CG, Tsiptsios DJ et al. Effect of age on pupillary light reflex: evaluation of pupil mobility for clinical practice and research. Electromyogr Clin Neurophysiol 2007; 47: 11-22.

Sharma S, Baskaran M, Rukmini AV et al. Factors influencing the pupillary light reflex in healthy individuals. Graefes Arch Clin Exp Ophthalmol 2016; 254:1353-1359.

Rukmini AV, Milea D, Aung T, Gooley JJ. Pupillary responses to short-wavelength light are preserved in aging. Sci Rep 2017; 7: 43832.

Published

2023-12-20

How to Cite

[1]
Tripolone, M.C., Issolio, L., Agüero, C., Lavaque, A. and Barrionuevo, P. 2023. Chromatic pupillometry in primary open-angle glaucoma suspected patients. Oftalmología Clínica y Experimental. 16, 04 (Dec. 2023), e346-e356. DOI:https://doi.org/10.70313/2718.7446.v16.n04.258.

Issue

Section

Artículos Originales

Most read articles by the same author(s)